ENGM 2283 Group 29 Project Report

Library Management System

For Farzaneh Naghibi

JAMES FANJOY (B00961930)
JACKSON CHAMBERS (B00964475)
JozsI McKEE (B00965604)

WEDNESDAY, APRIL 9™ 2025



1. Introduction

Our project is a data structure that is meant to hold the information about what books,
movies, and CDs are held at a library, with the user being able to manipulate the
information within the data structure through a main terminal and a list of commands.
Those commands are, store/retrieve to add new items and check what items are stored in
the library, sort: to sort all of the books, movies, and CDs in the library alphabetically by
title, print: to print out all the information of every item in the library, remove: to remove any
item from the library, count items: to tell you how many items are stored at the library,
isEmpty? to check if the library is empty, and lastly clear: which removes all items from the
library.

2.Design Process

The design process was focused on creating a modular and expandable system using our
knowledge of object-oriented programming.

2.1 Requirement Analysis

We determined that the key requirements for our library management system are the
following:

e [tem storage (Books, CDs, Movies)
e Common Attributes (all items have a title, genre, date, and location information)
e Specific Attributes
o Book (Length in pages, author, publisher)
o CD (Length in minutes, artist, producer)
o Movie (Length in minutes, director, cast)
e Core functions (showing, storing, retrieving, emptying, searching, or sorting all of
the items)
e Userinterface (Command line menu style interface)
e Input Validation (for data type of inputs)
e Data structure (a linked list to manage the items)

2.2 System Architecture

This system has a simple layout



1. Main function, which handles user interaction, menu display, input recognition,

input validation, and calls methods of the LinkedList class.

2. LinkedList class which manages the collection of items, providing the storage and

manipulation operators.

3. Other classes, Item (base class), Book, CD, Movie (derived class), Date and

Location(composite classes)

3. UML

The UML describes the relationship between our six main classes and shows how Books,
Movies, and CDs are different from one another.

Location

Floor - int
Aisle - char
Section : char

shelf : int

Item

location()
print()

Title - siring
Genre :int
Created : date

Location : location

Date

Day : int
Month : int

ear - int

Book

date()
operator=()
operator=()
operator==()
print()

Length : int
Author : string
Publisher : string

book()
print()

item()
print{)

CD
Length : int
Artist : string

Producer : string

Movie

4. Implementation

cd()
print(}

Length : int
Director : string

Cast - vector=string=

movie()
print()

Our implementation followed our UML starting with the date and location classes and then
building the rest of our classes off them. Once we had designed all of the classes for the
Objects we wanted to store in our library we created the class for our linked list




4.1 Date & Location

The first two classes we built were the Date and Locations classes, this is because they
were only used as composite classes to help build our library objects. Firstly, the date
class, this class was very basic with only three attributes all of type integer, one for the
month, day, and year. Other than its getter, print, and constructor methods, the date class
has three other methods, those are the overloaded “greater than” (>), “less than” (<), and
“equal to” (==) comparison operators. This was implemented so that more recent dates are
considered greater than older dates. Secondly the location class, this class is meant to
specify a specific location within the library, and for this reason it has four attributes, floor
of type integer, section of type character, aisle of type character, and shelf of type integer.
The attributes “section” and “aisle” are of type character because we found that most
libraries are organised into section such as children’s novels, non fiction, fiction, history,
comic books, magazines and these sorts of categories are better represented by letters
than by numbers, such as Kfor the kids section. The same choice was made for the aisles
as we found that most libraries organised their aisles from A-Z instead of numbering them.
The location class’s methods were very basic with it only needing getter methods, a print
method, and a constructor.

4.2 ltem

The item class was the next one we created, this is because it is the base class for the
different objects that can be stored in the library. The item class is composite to the
location and date classes, this is because the attributes of the item class are “date
created” which is of type date, and “location” which is of type location. The other attributes
of the item class are the title which is of type string, and genre which is of type integer.
“Genre” is of type integer because libraries use the Dewey decimal system to organise their
works which is a system represents different genres and categories of books as 3-6 digit
numbers. The methods for the Item class were very basic only needing getter methods and
a constructor.

4.3 Books, Movies, and CDs

The next classes we created were those which represented the different objects we would
be cataloguing, Books, Movies, and CDs. Theses classes all followed a similar formula,
their first attribute is “length”, representing pages for books, minutes for movies, and
seconds for CDs. The other attributes are for the people who created the work, for Books
this is the “author” and “Publisher” both of type string, for CDs it is “artist” and “producer”
both of type string, and for Movies it is “director” of type string and “cast” which is a vector



of type string to be able to hold however many cast members were involved. All three

classes only need to have constructor and print methods.

4.4 Linked List

To create our linked list which would store all of the libraries objects we created a class for

the nodes of the linked list. This class was very basic with two attributes, “item” which was

a pointer to that nodes data, and “node” which was a pointer to the next node in the list.

Then we created the linked list class, with the attributes; “head” which was a pointer to the

first node in the list, and count which was an integer to keep track of how many nodes were

in the list. The methods of the Linked list class where: Store to insert a new object into the

head of the list. Retrieve to find an item in the list using linear search by title. Sort which

uses a bubble sort algorithm to sort the list alphabetically. Remove to remove an object

from the list. Count to return the number of objects stored in the list. Is Empty to check if

the list was empty. Lastly, clear which would delete every object in the list.

5. Test cases and Functionality

The tests cover the inputs offered in the main menu and their expected outputs.

(Empty)

Description Input Steps Expected Output Status

Add a Book Choose '1, then '1". Enter valid Book "ltem stored successfully!" Pass
details. message. countltems() increases by 1.

Add aCD Choose '1, then '2". Enter valid CD "ltem stored successfully!" Pass
details. message. countltems() increases by 1.

Add a Movie Choose '1', then '3'. Enter valid Movie "ltem stored successfully!" Pass
details, type 'done' for cast. message. countltems() increases by 1.

Retrieve Existing Add anitem (e.g., "The Hobbit"). Item details for "The Hobbit" are printed. Pass

ltem Choose '2'. Enter "The Hobbit".

Retrieve Non- Choose '2'. Enter "NonExistent Book". | "ltem not found." message. Pass

Existent ltem

Sort Multiple Items Add "Lord of the Rings", "Dune", "Library sorted." message. Items printed in order: "Dune’, Pass
"Foundation". Choose '3". Choose '8" "Foundation", "Lord of the Rings".

Sort Empty Library Choose '3. "Library is empty." message. Pass

Remove Existing Add "Temp Book". Choose '4". Enter "ltem removed successfully." Pass

ltem "Temp Book". Choose '5" message. countltems() decreases.

Remove Non- Choose '4'. Enter "Ghost Book". "Item not found." message. countltems() remains Pass

Existent ltem unchanged.

Count ltems Choose '5'. "Number of items: 0". Pass




Count ltems Add 3items. Choose '5' "Number of items: 3". Pass
(Multiple)

Is Empty (Empty) Choose '6" "Library is empty." message. Pass
Is Empty (Not Add 1 item. Choose '6" "Library is not empty." message. Pass
Empty)

Clear Library Add items. Choose '7". Choose '5" "Library cleared." message. countltems() is 0. Pass
Print All (Empty) Choose '8 "Library is empty." message. Pass
Print All (Multiple Add a Book, CD, Movie. Choose '8". Details of all 3 items are printed, correctly formatted for Pass
Types) each type.

Exit Program Choose '0" "Exiting program." message. Program terminates cleanly. Pass
Invalid Menu Enter'9' or 'x". "Invalid choice. Please try again." message. Menu Pass
Choice redisplayed.

Invalid Iltem Type Choose '1". Enter '5' or 'abc’. "Invalid input..." message. Prompt repeated until valid (1, 2, | Pass
Input or 3).

Invalid Numeric Choose '1', "1 Enter 'xyz' for genre. "Invalid input..." message. Prompt repeated. Pass
Input (Genre)

Out-of-Range Choose '1), "1 Enter '13' for month. "Invalid input..." message. Prompt repeated. Pass
Numeric (Date)

Input String w/ Add item with title " Test Book ". Item stored as " Test Book ". Retrieval fails unless exact title | Pass
Spaces Retrieve using "Test Book". is entered.

6. Memory Leaks and Error Causing Inputs

6.1 Input restriction

The system uses input validation in the main function to enhance the user experience.

e Data type checking (cin.fail()) if true an error message is printed, cin.clear() resets
the error flags, and cin.ignore() destroys the current buffer content before re-
prompting the user

e Datarange checking, numbers and letters are validated in logical ranges (itemtype
1-3, genre 0-999 dewey decimal, month 1-12, day 1-31, floor 1-30, section/aisle A-Z,
shelf 1-6). An out of range input results in an error output message and then re-
prompts the user.

When inputting the cast for a Movie, a do-while loop with the get line command to handle
actor names with whitespaces and a done sentinel value to end the user input is used.



6.2 Memory leaks

Memory leaks are a problem in programs that utilize dynamically allocated memory like
ours with the (new) command in the main program.

Our main program allocates Book, CD, and Movie Objects onto the ‘heap’.

The LinkedList class deallocates these Item objects. It first deletes the data stored in the
node (delete current->data) and then deletes the Node itself. This is in the clear method of
LinkedList, and its how we prevent memory leaks.

The linkedlist and Item classes both have explicit deconstructors (~Linkedlist() simply calls
clear(), and virtual ~Item() calls nothing at all because it has no dynamic allocation of
memory itself, its important because the virtual modulator allows for inherited classes to
call their own deconstructors and while none of the current derived classes have
dynamically allocated memory, potentially some could in an expanded upon library
network that contains more complex items.

With the deconstructors and the Exit functionality in the main loop (which just calls clear()
when the user enters 0 to exit) our program efficiently avoids memory leaks and proactively
prevents future memory leaks with the inclusion of the virtual ~ltem() deconstructor.

7. Conclusion

This project successfully implements a library management system in the command line
capable of storing and managing Books, CDs, and Movies, as well as information linked to
each title. The design utilizes object-oriented programming using inheritance and
composition. A custom-built singly linked list is the dynamic data structure that serves as
the foundation for our system.

The system prints a clear menu-driven interface that covers the core functionalities of the
system: Storing, Retrieving, Sorting(Bubble alphabetically by title), Removing, Counting, Is
Empty check, Clearing, Print all items, and Exiting.

Overall, this project demonstrates a solid foundation of C++ fundamentals: object-oriented
design, custom data structures, and memory allocation considerations for dynamic
allocation. Improvements to this system would include a more robust searching algorithm
(better than an exact search by title) and an improved graphical user interface (GUI).



	1. Introduction
	2. Design Process
	2.1 Requirement Analysis
	2.2 System Architecture

	3. UML
	4. Implementation
	4.1 Date & Location
	4.2 Item
	4.3 Books, Movies, and CDs
	4.4 Linked List

	5. Test cases and Functionality
	6. Memory Leaks and Error Causing Inputs
	6.1 Input restriction
	6.2 Memory leaks

	7. Conclusion

